An Efficient Hybrid Evolutionary Optimization Method Coupling Cultural Algorithm with Genetic Algorithms and Its Application to Aerodynamic Shape Design

Author:

Zhao Xin,Tang Zhili,Cao Fan,Zhu Caicheng,Periaux Jacques

Abstract

Evolutionary algorithms have been widely used to solve complex engineering optimization problems with large search spaces and nonlinearity. Both cultural algorithm (CA) and genetic algorithms (GAs) have a broad prospect in the optimization field. The traditional CA has poor precision in solving complex engineering optimization problems and easily falls into local optima. An efficient hybrid evolutionary optimization method coupling CA with GAs (HCGA) is proposed in this paper. HCGA reconstructs the cultural framework, which uses three kinds of knowledge to build the belief space, and the GAs are used as an evolutionary model for the population space. In addition, a knowledge-guided t-mutation operator is developed to dynamically adjust the mutation step and introduced into the influence function. HCGA achieves a balance between exploitation and exploration through the above strategies, and thus effectively avoids falling into local optima and improves the optimization efficiency. Numerical experiments and comparisons with several benchmark functions show that the proposed HCGA significantly outperforms the other compared algorithms in terms of comprehensive performance, especially for high-dimensional problems. HCGA is further applied to aerodynamic optimization design, with the wing cruise factor being improved by 23.21%, demonstrating that HCGA is an efficient optimization algorithm with potential applications in aerodynamic optimization design.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3