A Novel Net Weighting Algorithm for Power and Timing-Driven Placement

Author:

Chentouf Mohamed1ORCID,Alaoui Ismaili Zine El Abidine1

Affiliation:

1. Information, Communication, and Embedded Systems (ICES) Team, University Mohammed V, Rabat, 10010, Morocco

Abstract

Nowadays, many new low power ASICs applications have emerged. This new market trend made the designer’s task of meeting the timing and routability requirements within the power budget more challenging. One of the major sources of power consumption in modern integrated circuits (ICs) is the Interconnect. In this paper, we present a novel Power and Timing-Driven global Placement (PTDP) algorithm. Its principle is to wrap a commercial timing-driven placer with a nets weighting mechanism to calculate the nets weights based on their timing and power consumption. The new calculated weight is used to drive the placement engine to place the cells connected by the critical power or timing nets close to each other and hence reduce the parasitic capacitances of the interconnects and, by consequence, improve the timing and power consumption of the design. This approach not only improves the design power consumption but facilitates also the routability with only a minor impact on the timing closure of a few designs. The experiments carried on 40 industrial designs of different nodes, sizes, and complexities and demonstrate that the proposed algorithm is able to achieve significant improvements on Quality of Results (QoR) compared with a commercial timing driven placement flow. We effectively reduce the interconnect power by an average of 11.5% that leads to a total power improvement of 5.4%, a timing improvement of 9.4%, 13.7%, and of 3.2% in Worst Negative Slack (WNS), Total Negative Slack (TNS), and total wirelength reduction, respectively.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3