Oviposition and Development of Anopheles coluzzii coetzee and Wilkerson in Salt Water

Author:

Nwaefuna E. K.1ORCID,Bagshaw Ibalafake Ibisobia2ORCID,Gbogbo F.2ORCID,Osae M.1ORCID

Affiliation:

1. Radiation Entomology and Pest Management Centre, Ghana Atomic Energy Commission, Ghana

2. Department of Animal Biology and Conservation Science, University of Ghana, Ghana

Abstract

Anopheles coluzzii is an important vector of malaria in sub-Saharan Africa particularly of the most dangerous malaria parasite. It completes its life cycle in water and a change in physicochemical properties particularly that of salinity of water may affect egg laying and perhaps the development of eggs to maturity. Studies have shown that climate change may alter the transmission of many vector-borne diseases in different parts of the world and global warming will also raise sea levels which will lead to an increase in saline and brackish water body in coastal areas. This study investigated the salinity tolerance level of An. coluzzii. It involved creation of artificial environments of different salinity gradients using rainwater and sea water and the subsequent exposure of the media to An. coluzzii for laying of eggs and development of larvae to adult. Anopheles coluzzii showed ovipositional preference for less saline media as there was significant negative correlation between number of eggs laid and salinity of oviposition media. Effect of salinity was evident in egg development and larval survival, as no egg hatched in >30% sea water, all L3 larvae died in >40% seawater, and the maximum seawater concentration for L4 survival was 30%. An LC50 of 17.51% (95% CI: 9.31–24.56)% and 23.4% (95% CI: 16.76–22.30)% were calculated for L3 and L4 larvae respectively. Adults emerging from fresh and low saline water of 10% seawater had greater energy reserve than those emerging from 20% and 30% seawater. Increasing salinity did not affect wing length of the emerging adult. Despite the increased stress on larval development, some individuals survived and went on to emerge as adults in conditions that seem to be representative of brackish water. This may imply that an increase in brackish water sites caused by rising sea levels might create more suitable breeding sites for this species.

Publisher

Hindawi Limited

Subject

Infectious Diseases,Epidemiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3