Water Physicochemical Parameters and Microbial Composition Distinguish Anopheles and Culex Mosquito Breeding Sites: Potential as Ecological Markers for Larval Source Surveillance

Author:

Kinga Harriet1,Kengne-Ouafo Jonas A23,King Sandra A4,Egyirifa Richardson K4,Aboagye-Antwi Fred15,Akorli Jewelna24ORCID

Affiliation:

1. African Regional Postgraduate Program in Insect Science, University of Ghana , Legon , Ghana

2. West African Centre for Cell Biology of Infectious Pathogens, University of Ghana , Legon , Ghana

3. Medical Entomology Department, Centre of Research in Infectious Diseases (CRID) , Yaounde , Cameroon

4. Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana , Legon , Ghana

5. Department of Animal Biology and Conservation Sciences, University of Ghana , Legon , Ghana

Abstract

Abstract The presence of mosquitoes in an area is dependent on the availability of suitable breeding sites that are influenced by several environmental factors. Identification of breeding habitats for vector surveillance and larval source management is key to disease control programs. We investigated water quality parameters and microbial composition in selected mosquito breeding sites in urban Accra, Ghana and associated these with abundance of Anopheles (Diptera: Culicidae) and Culex (Diptera: Culicidae) larvae. Physicochemical parameters and microbial composition explained up to 72% variance among the breeding sites and separated Anopheles and Culex habitats (P < 0.05). Anopheles and Culex abundances were commonly influenced by water temperature, pH, nitrate, and total hardness with contrasting impacts on the two mosquito species. In addition, total dissolved solids, biochemical oxygen demand, and alkalinity uniquely influenced Anopheles abundance, while total suspended solids, phosphate, sulphate, ammonium, and salinity were significant determinants for Culex. The correlation of these multiple parameters with the occurrence of each mosquito species was high (R2 = 0.99, P < 0.0001). Bacterial content assessment of the breeding ponds revealed that the most abundant bacterial phyla were Patescibacteria, Cyanobacteria, and Proteobacteria, constituting >70% of the total bacterial richness. The oligotrophic Patescibacteria was strongly associated with Anopheles suggestive of the mosquito’s adaptation to environments with less nutrients, while predominance of Cyanobacteria, indicative of rich nutritional source was associated with Culex larval ponds. We propose further evaluation of these significant abiotic and biotic parameters in field identification of larval sources and how knowledge of these can be harnessed effectively to reduce conducive breeding sites for mosquitoes.

Funder

Deutscher Akademischer Austausch Dienst German Academic Exchange Service

Developing Excellence in Leadership, Training and Science

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Insect Science,General Veterinary,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3