Dose and developmental responses of Anopheles merus larvae to salinity

Author:

White Bradley J.12,Kundert Peter N.1,Turissini David A.2,Van Ekeris Leslie3,Linser Paul J.3,Besansky Nora J.1

Affiliation:

1. Eck Institute for Global Health, Department of Biology, University of Notre Dame, Notre Dame, IN 46556, USA

2. Department of Entomology, University of California, Riverside, CA 92521, USA

3. The University of Florida Whitney Laboratory, 9505 Ocean Shore Boulevard, St Augustine, FL 32080, USA

Abstract

SUMMARY Saltwater tolerance is a trait that carries both ecological and epidemiological significance for Anopheles mosquitoes that transmit human malaria, as it plays a key role in determining their habitat use and ecological distribution, and thus their local contribution to malaria transmission. Here, we lay the groundwork for genetic dissection of this trait by quantifying saltwater tolerance in three closely related cryptic species and malaria vectors from the Afrotropical Anopheles gambiae complex that are known to differ starkly in their tolerance to salinity: the obligate freshwater species A. gambiae and A. coluzzii, and the saltwater-tolerant species A. merus. We performed detailed comparisons of survivorship under varying salinities, using multiple strains of A. gambiae, A. coluzzii and A. merus, as well as F1 progeny from reciprocal crosses of A. merus and A. coluzzii. Additionally, using immunohistochemistry, we compared the location of three ion regulatory proteins (Na+/K+-ATPase, carbonic anhydrase and Na+/H+-antiporter) in the recta of A. coluzzii and A. merus reared in freshwater or saline water. As expected, we found that A. merus survives exposure to high salinities better than A. gambiae and A. coluzzii. Further, we found that exposure to a salinity level of 15.85 g NaCl l−1 is a discriminating dose that kills all A. gambiae, A. coluzzii and A. coluzzii–A. merus F1 larvae, but does not negatively impact the survival of A. merus. Importantly, phenotypic expression of saltwater tolerance by A. merus is highly dependent upon the developmental time of exposure, and based on immunohistochemistry, salt tolerance appears to involve a major shift in Na+/K+-ATPase localization in the rectum, as observed previously for the distantly related saline-tolerant species A. albimanus.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference36 articles.

1. On the evolution of saline tolerance in the larvae of mosquitoes in the genus Ochlerotatus;Albers;Physiol. Biochem. Zool.,2011

2. Physiology of osmoregulation in mosquitoes;Bradley;Annu. Rev. Entomol.,1987

3. The role of physiological capacity, morphology, and phylogeny in determining habitat use in mosquitoes;Bradley,1994

4. Saline-water insects: ecology, physiology and evolution;Bradley,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3