Performance Analysis of Hybrid Deep Learning Models with Attention Mechanism Positioning and Focal Loss for Text Classification

Author:

Prabhakar Sunil Kumar1ORCID,Rajaguru Harikumar2,Won Dong-Ok3ORCID

Affiliation:

1. Department of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Republic of Korea

2. Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam 638401, India

3. Department of Artificial Intelligence Convergence, Hallym University, Chuncheon 24252, Gangwon, Republic of Korea

Abstract

Over the past few decades, text classification problems have been widely utilized in many real time applications. Leveraging the text classification methods by means of developing new applications in the field of text mining and Natural Language Processing (NLP) is very important. In order to accurately classify tasks in many applications, a deeper insight into deep learning methods is required as there is an exponential growth in the number of complex documents. The success of any deep learning algorithm depends on its capacity to understand the nonlinear relationships of the complex models within data. Thus, a huge challenge for researchers lies in the development of suitable techniques, architectures, and models for text classification. In this paper, hybrid deep learning models, with an emphasis on positioning of attention mechanism analysis, are considered and analyzed well for text classification. The first hybrid model proposed is called convolutional Bidirectional Long Short-Term Memory (Bi-LSTM) with attention mechanism and output (CBAO) model, and the second hybrid model is called convolutional attention mechanism with Bi-LSTM and output (CABO) model. In the first hybrid model, the attention mechanism is placed after the Bi-LSTM, and then the output Softmax layer is constructed. In the second hybrid model, the attention mechanism is placed after convolutional layer and followed by Bi-LSTM and the output Softmax layer. The proposed hybrid models are tested on three datasets, and the results show that when the proposed CBAO model is implemented for IMDB dataset, a high classification accuracy of 92.72% is obtained and when the proposed CABO model is implemented on the same dataset, a high classification accuracy of 90.51% is obtained.

Funder

Korean National Police Agency

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3