Hybrid Models for Emotion Classification and Sentiment Analysis in Indonesian Language

Author:

Ahmadian HendriORCID,Abidin Taufik F.ORCID,Riza HammamORCID,Muchtar KahlilORCID

Abstract

The swift growth of social networks has enabled easy access to a wealth of user‐created information for public assessment. These data hold potential for various uses, including analyzing comments and reviews through text analysis. The study utilizes a specialized version of the Bidirectional Encoder Representations from Transformers (BERT) model known as IndoBERT, tailored explicitly for Bahasa Indonesia. It aims to improve accuracy in the Indonesian natural language understanding benchmark by boosting performance in sentiment analysis and emotion classification tasks. The testing for both tasks involved a hybrid methodology that merged the summations of the four last hidden layers from the IndoBERT model with a combination of bidirectional long short‐term memory (BiLSTM), bidirectional gated recurrent unit (BiGRU), and an attention model. The resulting model’s performance was assessed using the F1‐score metric. Based on the experimental results, the proposed model achieves an accuracy of 93% for sentiment analysis and 78% for emotion classification on the Indonesian natural language understanding (IndoNLU) benchmark dataset. The implementation result shows that the optimal accuracy of the models’ performance evaluation was obtained using different hybrid models.

Funder

Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3