Integrated Model Text Classification Based on Multineural Networks

Author:

Hu Wenjin1,Xiong Jiawei1,Wang Ning1,Liu Feng1ORCID,Kong Yao2,Yang Chaozhong3ORCID

Affiliation:

1. College of Computer Science, Xi’an Polytechnic University, Xi’an 710600, China

2. College of Electronics and Information, Xi’an Polytechnic University, Xi’an 710600, China

3. National Time Service Center, Chinese Academy of Sciences, Xi’an 710600, China

Abstract

Based on the original deep network architecture, this paper replaces the deep integrated network by integrating shallow FastText, a bidirectional gated recurrent unit (GRU) network and the convolutional neural networks (CNNs). In FastText, word embedding, 2-grams and 3-grams are combined to extract text features. In recurrent neural networks (RNNs), a bidirectional GRU network is used to lessen information loss during the process of transmission. In CNNs, text features are extracted using various convolutional kernel sizes. Additionally, three optimization algorithms are utilized to improve the classification capabilities of each network architecture. The experimental findings using the social network news dataset demonstrate that the integrated model is effective in improving the accuracy of text classification.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Reference30 articles.

1. Research and development of deep learning based text classification;He;Comput. Eng.,2021

2. CDGAN-BERT: Adversarial constraint and diversity discriminator for semi-supervised text classification;Zhou;Knowl.-Based Syst.,2024

3. Nakajima, H., and Sasaki, M. (2023). Text Classification Based on the Heterogeneous Graph Considering the Relationships between Documents. Big Data Cogn. Comput., 7.

4. Performance Analysis of Hybrid Deep Learning Models with Attention Mechanism Positioning and Focal Loss for Text Classification;Prabhakar;Sci. Program.,2021

5. SANTM: Efficient Self-attention-driven Network for Text Matching;Tiwari;ACM Trans. Internet Technol. (TOIT),2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3