A Piecewise Hysteresis Model for a Damper of HIS System

Author:

Tian Kaidong1,Zhang Bangji1ORCID,Zhang Nong12,Liu Xuhui1,Ji Jinchen2

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China

2. School of Electrical, Mechanical and Mechatronic Systems, University of Technology Sydney, Ultimo, NSW 2007, Australia

Abstract

A damper of the hydraulically interconnected suspension (HIS) system, as a quarter HIS, is prototyped and its damping characteristic is tested to characterize the damping property. The force-velocity characteristic of the prototype is analyzed based on a set of testing results and accordingly a piecewise hysteresis model for the damper is proposed. The proposed equivalent parametric model consists of two parts: hysteresis model in low speed region and saturation model in high speed region which are used to describe the hysteresis phenomenon in low speed and nonhysteresis phenomenon in high speed, respectively. The parameters of the model are identified based on genetic algorithm by setting the constraints of parameters according to their physical significances and the corresponding testing results. The advantages of the model are highlighted by comparing to the nonhysteresis model and the permanent hysteresis model. The numerical simulation results are compared with the testing results to validate the accuracy and effectiveness of the proposed model. Finally, to further verify the proposed model’s wide applicability under different excitation conditions, its results are compared to the testing results in three-dimensional space. The research in this paper is significant for the dynamic analysis of the HIS vehicle.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental and Numerical Studies on the Development of Hysteresis in a Shock Absorber with a Shim Disc Valve;International Journal of Automotive and Mechanical Engineering;2022-06-28

2. Assessment of adjustable damping in the ride comfort of a baja SAE vehicle;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2020-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3