Affiliation:
1. School of Mechatronic Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
Abstract
A magnetorheological (MR) damper is one of the most advanced devices used in a semiactive control system to mitigate unwanted vibration because the damping force can be controlled by changing the viscosity of the internal magnetorheological (MR) fluids. This study proposes a typical double coil MR damper where the damping force and dynamic range were derived from a quasistatic model based on the Bingham model of MR fluid. A finite element model was built to study the performance of this double coil MR damper by investigating seven different piston configurations, including the numbers and shapes of their chamfered ends. The objective function of an optimization problem was proposed and then an optimization procedure was constructed using the ANSYS parametric design language (APDL) to obtain the optimal damping performance of a double coil MR damper. Furthermore, experimental tests were also carried out, and the effects of the same direction and reverse direction of the currents on the damping forces were also analyzed. The relevant results of this analysis can easily be extended to the design of other types of MR dampers.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献