Design, theoretical modeling, and experimental analysis of a magnetorheological damper with radial damping gap

Author:

Yan Jian12ORCID,Dong Longlei12

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi, China

2. School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Abstract

In order to describe and predict the damping force of the magnetorheological damper with radial damping gap, a more accurate damping force calculation model is proposed through theoretical modeling. Firstly, according to the working environment of the heavy vehicle, a magnetorheological damper with radial damping gap is designed in a limited installation space, which has the characteristics of large damping force and tensile damping force greater than compression damping force. Secondly, based on the Bingham model for theoretical modeling, the analytical solution of the pressure drop gradient of the radial damping gap is obtained, and then a theoretical model that can more effectively reflect the mechanical characteristics of the radial damping gap is proposed. The dynamic characteristics of the designed magnetorheological damper are tested, and the experimental results verify that the designed structure has a good magnetorheological effect. When the current is 3 A, the maximum damping force of the damper exceeds 16 kN. Finally, by comparing the simulation results of the theoretical model with the experimental results, the results show that the established mathematical model can describe the experimental results well. The accuracy of the theoretical model is verified by comparing the proposed model with two commonly used models.

Funder

The major scientific and technological innovation project of Shandong Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3