Semiactive Control of High-Speed Railway Vehicle Suspension Systems with Magnetorheological Dampers

Author:

Liao Yingying12ORCID,Liu Yongqiang23ORCID,Yang Shaopu23ORCID

Affiliation:

1. School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei, China

2. State Key Laboratory of Mechanical Behavior in Traffic Engineering Structure and System Safety, Shijiazhuang, Hebei, China

3. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei, China

Abstract

Using the magnetorheological (MR) damper model, this paper derives a semiactive suspension model for a high-speed railway vehicle, and a new evaluating method is proposed to analyze the effect of two kinds of time delay existing in control systems on vehicle dynamic performance. The railway vehicle is modeled by a 50 degree-of-freedom (DOF) system which considers the full 6 DOF of each wheelset, bogie, car body, and the pitch angle of each axle box. Several control strategies, sky-hook (SH), acceleration-driven damping (ADD), and mixed SH-ADD, are considered in the semiactive suspension system. To evaluate the effect of these semiactive controls and the different kinds of time delay on the lateral ride index of a high-speed railway vehicle, a 3D surface in a rectangular coordinate system is described. The cross curve between the 3D surface and a horizontal plane which represents the performance of passive suspension is projected on the X-Y plane, and the area enclosed by the contour line, X-axis, and Y-axis can be used to evaluate the performance of semiactive controls. The results show that the new method is convenient to evaluate the performance of semiactive control strategies visually when there is more than one kind of time delay.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3