Affiliation:
1. Departamento de Posgrado, Instituto Tecnológico Superior de Lerdo, Tecnológico 1555, Placido Domingo, 35150 Lerdo, DG, Mexico
2. Departamento de Posgrado, Instituto Tecnológico de la Laguna, Boulevard Revolución, Centro, 27000 Torreón, CO, Mexico
Abstract
The identification of pollen in an automated way will accelerate different tasks and applications of palynology to aid in, among others, climate change studies, medical allergies calendar, and forensic science. The aim of this paper is to develop a system that automatically captures a hundred microscopic images of pollen and classifies them into the 12 different species from Lagunera Region, Mexico. Many times, the pollen is overlapping on the microscopic images, which increases the difficulty for its automated identification and classification. This paper focuses on a method to segment the overlapping pollen. First, the proposed method segments the overlapping pollen. Second, the method separates the pollen based on the mean shift process (100% segmentation) and erosion by H-minima based on the Fibonacci series. Thus, pollen is characterized by its shape, color, and texture for training and evaluating the performance of three classification techniques: random tree forest, multilayer perceptron, and Bayes net. Using the newly developed system, we obtained segmentation results of 100% and classification on top of 96.2% and 96.1% in recall and precision using multilayer perceptron in twofold cross validation.
Funder
Consejo Nacional de Ciencia y Tecnología
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献