Deductive automated pollen classification in environmental samples via exploratory deep learning and imaging flow cytometry

Author:

Barnes Claire M.1ORCID,Power Ann L.2ORCID,Barber Daniel G.3ORCID,Tennant Richard K.3ORCID,Jones Richard T.,Lee G. Rob2,Hatton Jackie3,Elliott Angela3,Zaragoza‐Castells Joana3,Haley Stephen M.3ORCID,Summers Huw D.1ORCID,Doan Minh4ORCID,Carpenter Anne E.5ORCID,Rees Paul15ORCID,Love John2ORCID

Affiliation:

1. College of Engineering Swansea University Bay Campus Swansea SA1 8EN UK

2. Biosciences, Faculty of Life and Health Sciences University of Exeter Exeter EX4 4QD UK

3. Geography, Faculty of Environment, Science and Economics University of Exeter Exeter EX4 4RJ UK

4. Bioimaging Analytics GlaxoSmithKline Collegeville, Upper Providence PA 19426 USA

5. Imaging Platform Broad Institute of Harvard and MIT Cambridge MA 02142 USA

Abstract

Summary Pollen and tracheophyte spores are ubiquitous environmental indicators at local and global scales. Palynology is typically performed manually by microscopic analysis; a specialised and time‐consuming task limited in taxonomical precision and sampling frequency, therefore restricting data quality used to inform climate change and pollen forecasting models. We build on the growing work using AI (artificial intelligence) for automated pollen classification to design a flexible network that can deal with the uncertainty of broad‐scale environmental applications. We combined imaging flow cytometry with Guided Deep Learning to identify and accurately categorise pollen in environmental samples; here, pollen grains captured within c. 5500 Cal yr BP old lake sediments. Our network discriminates not only pollen included in training libraries to the species level but, depending on the sample, can classify previously unseen pollen to the likely phylogenetic order, family and even genus. Our approach offers valuable insights into the development of a widely transferable, rapid and accurate exploratory tool for pollen classification in ‘real‐world’ environmental samples with improved accuracy over pure deep learning techniques. This work has the potential to revolutionise many aspects of palynology, allowing a more detailed spatial and temporal understanding of pollen in the environment with improved taxonomical resolution.

Funder

NIH Clinical Center

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3