A user‐friendly method to get automated pollen analysis from environmental samples

Author:

Gimenez Betty1ORCID,Joannin Sébastien12ORCID,Pasquet Jérôme34ORCID,Beaufort Luc5ORCID,Gally Yves5,de Garidel‐Thoron Thibault5ORCID,Combourieu‐Nebout Nathalie6ORCID,Bouby Laurent1ORCID,Canal Sandrine1,Ivorra Sarah1ORCID,Limier Bertrand17,Terral Jean‐Frédéric1ORCID,Devaux Céline18ORCID,Peyron Odile1ORCID

Affiliation:

1. ISEM Univ Montpellier, CNRS, IRD 34090 Montpellier France

2. School of Earth, Environment & Society McMaster University L8S 4K1 Hamilton ON Canada

3. AMIS Univ Paul‐Valérie Montpellier 3 34090 Montpellier France

4. TETIS, INRAE, AgroParisTech, Cirad, CNRS Univ Montpellier 34090 Montpellier France

5. CEREGE, Aix Marseille Université, CNRS, IRD, Coll. France, INRAE 13545 Aix‐en‐Provence France

6. UMR 7194 CNRS, MNHN, HNHP, Institut de Paleontologie Humaine 75013 Paris France

7. INRAE, Centre Occitanie‐Montpellier 34000 Montpellier France

8. Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques Université de Montréal H1X 2B2 Montreal QC Canada

Abstract

Summary Automated pollen analysis is not yet efficient on environmental samples containing many pollen taxa and debris, which are typical in most pollen‐based studies. Contrary to classification, detection remains overlooked although it is the first step from which errors can propagate. Here, we investigated a simple but efficient method to automate pollen detection for environmental samples, optimizing workload and performance. We applied the YOLOv5 algorithm on samples containing debris and c. 40 Mediterranean plant taxa, designed and tested several strategies for annotation, and analyzed variation in detection errors. About 5% of pollen grains were left undetected, while 5% of debris were falsely detected as pollen. Undetected pollen was mainly in poor‐quality images, or of rare and irregular morphology. Pollen detection remained effective when applied to samples never seen by the algorithm, and was not improved by spending time to provide taxonomic details. Pollen detection of a single model taxon reduced annotation workload, but was only efficient for morphologically differentiated taxa. We offer guidelines to plant scientists to analyze automatically any pollen sample, providing sound criteria to apply for detection while using common and user‐friendly tools. Our method contributes to enhance the efficiency and replicability of pollen‐based studies.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3