Automatic Classification of Pollen Grain Microscope Images Using a Multi-Scale Classifier with SRGAN Deblurring

Author:

Chen Xingyu,Ju Fujiao

Abstract

Pollen allergies are seasonal epidemic diseases that are accompanied by high incidence rates, especially in Beijing, China. With the development of deep learning, key progress has been made in the task of automatic pollen grain classification, which could replace the time-consuming and laborious manual identification process using a microscope. In China, few pioneering works have made significant progress in automatic pollen grain classification. Therefore, we first constructed a multi-class and large-scale pollen grain dataset for the Beijing area in preparation for the task of pollen classification. Then, a deblurring pipeline was designed to enhance the quality of the pollen grain images selectively. Moreover, as pollen grains vary greatly in size and shape, we proposed an easy-to-implement and efficient multi-scale deep learning architecture. Our experimental results showed that our architecture achieved a 97.7% accuracy, based on the Resnet-50 backbone network, which proved that the proposed method could be applied successfully to the automatic identification of pollen grains in Beijing.

Funder

Beijing Municipal Science & Technology Commision

International Research Cooperation Seed Fund Beijing University of Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Detection of Dermatophagoides farinae in the Dust of Air Conditioning Filters

2. Pollen Allergens for Molecular Diagnosis

3. Pollen-related allergy in Europe

4. Research Progress of Pollen Allergy;Yang;Chin. Agric. Sci. Bull.,2015

5. Classification of pollen grain images based on an ensemble of classifiers;Arias;Proceedings of the 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA),2017

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3