Abstract
Pollen allergies are seasonal epidemic diseases that are accompanied by high incidence rates, especially in Beijing, China. With the development of deep learning, key progress has been made in the task of automatic pollen grain classification, which could replace the time-consuming and laborious manual identification process using a microscope. In China, few pioneering works have made significant progress in automatic pollen grain classification. Therefore, we first constructed a multi-class and large-scale pollen grain dataset for the Beijing area in preparation for the task of pollen classification. Then, a deblurring pipeline was designed to enhance the quality of the pollen grain images selectively. Moreover, as pollen grains vary greatly in size and shape, we proposed an easy-to-implement and efficient multi-scale deep learning architecture. Our experimental results showed that our architecture achieved a 97.7% accuracy, based on the Resnet-50 backbone network, which proved that the proposed method could be applied successfully to the automatic identification of pollen grains in Beijing.
Funder
Beijing Municipal Science & Technology Commision
International Research Cooperation Seed Fund Beijing University of Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献