A Generative Adversarial Network Model Based on Intelligent Data Analytics for Music Emotion Recognition under IoT

Author:

Huang I.-Sheng1,Lu Yu-Hsuan2,Shafiq Muhammad3ORCID,Ali Laghari Asif4,Yadav Rahul5

Affiliation:

1. College of Music, Huaiyin Normal University, Huai’an 223300, Jiangsu, China

2. College of Music, University of North Texas, Denton 76201, TX, USA

3. Cyberspace Institute of Advance Technology, Guangzhou University, Guangzhou, China

4. Department of Computer Science, Sindh Madressatul Islam University, Karachi, Pakistan

5. Peng Cheng Laboratory, Shenzhen, China

Abstract

The popularity of the Internet has brought the rapid development of artificial intelligence, affective computing, Internet of things (IoT), and other technologies. Particularly, the development of IoT provides more references for the realization of smart home. However, when people have achieved a certain amount of material satisfaction, they are more likely to want to communicate emotionally. Music contains a lot of emotion information. Music data is an important communication way between people and a better way to convey emotions. Therefore, it has become one of the most convenient and natural interactive ways expected by people in intelligent human-computer interaction. Traditional music emotion recognition methods have some demerits such as low recognition rate and time-consuming. So, we propose a generative adversarial network (GAN) model based on intelligent data analytics for music emotion recognition under IoT. Driven by the double-channel fusion strategy, the GAN can effectively extract the local and global features of the image or voice. Meanwhile, in order to increase the feature difference between the emotional voices, the feature data matrix of the Meyer frequency cepstrum coefficient of the music signals is transformed to improve the expression ability of the GAN. The experiment results show that the proposed model can effectively recognize the music emotion. Compared with other state-of-the-art approaches, the error recognition rate of proposed music music data recognition is greatly reduced. In terms of the accuracy, it exceeds 87% which is higher than that of other methods.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3