PAM: Predictive analytics and modules‐based computation offloading framework using greedy heuristics and 5G NR‐V2X

Author:

Khattak Muhammad Ilyas1ORCID,Yuan Hui1,Ahmad Ayaz2ORCID,Ahmed Manzoor3,Khan Ajmal4,Inamullah 5

Affiliation:

1. School of Control Science and Engineering Shandong University Jinan Shandong People's Republic of China

2. Department of Electrical Engineering King Faisal University Al‐Ahsa Saudi Arabia

3. School of Computer and Information Science and AI Industrial Technology Research Hubei Engineering University Xiaogan People's Republic of China

4. Information and Communication Research Centre Sultan Qaboos University Al Khod Oman

5. School of Computer Science and Technology Shandong Jianzhu University (SDJZU) Jinan Shandong People's Republic of China

Abstract

AbstractRecent advancements in distributed computing systems have shown promising prospects in enabling the effective usage of many next‐generation applications. These applications include a wide range of fields, such as healthcare, interactive gaming, video streaming, and other related technologies. Among such solutions are the evolving vehicular fog computing (VFC) frameworks that make use of IEEE and 3GPP protocols and use advanced optimization algorithms. However, these approaches often rely on outdated protocols or computationally intensive mathematical techniques for solving or representing their optimization models. Additionally, some of these frameworks have not thoroughly considered the type of application during their evaluation and validation phases. In response to these challenges, we have developed the “predictive analytics and modules” (PAM) framework, which operates on a time and event‐driven basis. It utilizes up‐to‐date 3GPP protocols to address the inherent unpredictability of VFC‐enabled distributed computing systems required in smart healthcare systems. Through a combination of a greedy heuristic approach and a distributed offloading architecture, PAM efficiently optimizes decisions related to task offloading and computation allocation. This is achieved through specialized algorithms that provide support to computationally weaker devices, all within a time frame of under 100 ms. To assess the performance of PAM in comparison to three benchmark methodologies, the evaluation pathways that we employed are average response time, probability density function, pareto‐analysis, algorithmic run time, and algorithmic complexity.

Funder

Major Scientific and Technological Innovation Project of Shandong Province

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3