Design and use of a wireless temperature measurement network system integrating artificial intelligence and blockchain in electrical power engineering

Author:

Dong Dianshuai,Feng HongliangORCID

Abstract

This work aims to investigate the potential fire hazard stemming from the overheating of power equipment. The advent of the artificial intelligence era has facilitated the fusion of blockchain and Internet of Things (IoT) technologies. This work delves into the technical standards for IoT equipment monitoring and smart grid communication, and the IoT environment of power grid equipment. This work introduces a temperature monitoring network tailored for IoT wireless power equipment suitable for the power environment, and conducts system debugging in the power laboratory. The findings affirm that the temperature out-of-limit alarm testing has met the required criteria, confirming the system’s ability to issue timely warnings when temperatures breach a predefined threshold, effectively avoiding high-temperature misfires. This work fully harnesses the secure and user-friendly operation of smart blockchain and the wireless sensing technology of the IoT to realize online monitoring and remote temperature measurement of the power system. It can effectively prevent equipment from overheating and damage, and promote the development of equipment condition monitoring technology in electric power engineering.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference52 articles.

1. Electric signature detection and analysis for power equipment failure monitoring in smart grid;S. He;IEEE T. Ind. Inform.,2020

2. Research on status information monitoring of power equipment based on Internet of Things;L. Long;Energy Reports,2022

3. An overview of patient’s health status monitoring system based on Internet of Things (IoT);K.T. Kadhim;Wireless Pers. Commun.,2020

4. Leveraging on the cognitive radio channel aggregation strategy for next generation utility networks;E. Ebenezer;Energies,2019

5. Wind-driven self-powered wireless environmental sensors for Internet of Things at long distance;D. Liu;Nano Energy,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3