Ultra-Low-Voltage Self-Body Biasing Scheme and Its Application to Basic Arithmetic Circuits

Author:

Taco Ramiro1,Lanuzza Marco1ORCID,Albano Domenico1

Affiliation:

1. Department of Computer Science, Modeling, Electronics and System Engineering, University of Calabria, Via P. Bucci 42C, 87036 Rende, Italy

Abstract

The gate level body biasing (GLBB) is assessed in the context of ultra-low-voltage logic designs. To this purpose, a GLBB mirror full adder is implemented by using a commercial 45 nm bulk CMOS triple-well technology and compared to equivalent conventional zero body-biased CMOS and dynamic threshold voltage MOSFET (DTMOS) circuits under different running conditions. Postlayout simulations demonstrate that, at the parity of leakage power consumption, the GLBB technique exhibits a significant concurrent reduction of the energy per operation and the delay in comparison to the conventional CMOS and DTMOS approaches. The silicon area required by the GLBB full adder is halved with respect to the equivalent DTMOS implementation, but it is higher in comparison to conventional CMOS design. Performed analysis also proves that the GLBB solution exhibits a high level of robustness against temperature fluctuations and process variations.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Hardware and Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparative Analysis of Body Biasing Techniques for Digital Integrated Circuits;Advances in Intelligent Systems and Computing;2022

2. High-Speed and Low-Energy Dual-Mode Logic based Single-Clack-Cycle Binary Comparator;2021 IEEE 12th Latin America Symposium on Circuits and System (LASCAS);2021-02-21

3. Gated body-biased full adder;Materials Today: Proceedings;2018

4. Design of Ultralow Voltage-Hybrid Full Adder Circuit Using GLBB Scheme for Energy-Efficient Arithmetic Applications;Lecture Notes in Electrical Engineering;2018

5. Body Biased High Speed Full Adder to LNCS/LNAI/LNBI Proceedings;Lecture Notes in Networks and Systems;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3