Affiliation:
1. School of Mechanical Engineering, Jiangnan University, Wuxi, 214122, China
2. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China
Abstract
Multilegged robots can adapt to complex terrains, an ability that is highly important for their research and development. To improve the adaptability and fault tolerance of such robots, the modular design concept is applied by an increase in the number of modules. A modular multilegged robot contains a trunk with six modular leg structures that can be removed at will. The interface design of the trunk and legs can achieve good tightness and high strength, thereby ensuring quick disassembly and that the trunk and legs will not fall off while the robot walks. On this basis, the gait of a robot with different numbers of modular legs is designed. Then, kinematic and dynamic models of the robots with different gaits are established, and the motion performance, which provides reference for motion control and motor selection, is analyzed. Experiments show that the robot with different numbers of legs has good motion performance. This study serves as a useful reference for the design of modular multilegged robots.
Funder
National Science Foundation for Young Scientists of China
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献