Enabling robustness to failure with modular field robots

Author:

Cordie Troy,Roberts Jonathan,Dunbabin Matthew,Dungavell Ross,Bandyopadhyay Tirthankar

Abstract

Actuator failure on a remotely deployed robot results in decreased efficiency or even renders it inoperable. Robustness to these failures will become critical as robots are required to be more independent and operate out of the range of repair. To address these challenges, we present two approaches based on modular robotic architecture to improve robustness to actuator failure of both fixed-configuration robots and modular reconfigurable robots. Our work uses modular reconfigurable robots capable of modifying their style of locomotion and changing their designed morphology through ejecting modules. This framework improved the distance travelled and decreased the effort to move through the environment of simulated and physical robots. When the deployed robot was allowed to change its locomotion style, it showed improved robustness to actuator failure when compared to a robot with a fixed controller. Furthermore, a robot capable of changing its locomotion and design morphology statistically outlasted both tests with a fixed morphology. Testing was carried out using a gazebo simulation and validated in multiple tests in the field. We show for the first time that ejecting modular failed components can improve the overall mission length.

Funder

Commonwealth Scientific and Industrial Research Organisation

Publisher

Frontiers Media SA

Reference39 articles.

1. Active reconfiguration for performance enhancement in articulated wheeled vehicles;Alamdari,2014

2. Design of articulated leg–wheel subsystem by kinetostatic optimization;Alamdari;Mech. Mach. Theory,2016

3. Kinematic modeling, analysis and control of highly reconfigurable articulated wheeled vehicles;Alamdari,2013

4. Autonomous 6D-docking and manipulation with non-stationary-base using self-reconfigurable modular robots;Barrios,2016

5. Design of the Scarab rover for mobility and drilling in the lunar cold traps;Bartlett;Int. Symposium Artif. Intell. Robotics Automation Space,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3