Parking Demand Prediction Method of Urban Commercial-Office Complex Buildings Based on the MRA-BAS-BP Algorithm

Author:

Tang Xiang1ORCID,Ma Jianxiao1ORCID,Zhou Shun2ORCID,Shan Tianci2ORCID

Affiliation:

1. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China

2. Nanjing Institute of City & Transport Planning Co., Ltd., Nanjing, Jiangsu, China

Abstract

With the increasingly significant trend of developing urban land for mixed-use, an increasing number of urban commercial and office complexes have been built. The parking demand characteristics of such buildings are more complex than the parking demand characteristics of single-use buildings due to more diverse influencing factors. As there are complicated linear and nonlinear relationships between parking demand and influencing factors, it is difficult to accurately predict parking demand using a single multiple regression analysis (MRA) model. Hence, in this paper, a combined algorithm based on the MRA model, beetle antennae search (BAS) algorithm, and BP neural network is proposed for demand prediction. In this paper, a two-level and ten-category index system is established and then mixed with the BP algorithm through the MRA model to improve the overall robustness and accuracy of the algorithm. Then, the BAS algorithm is used to search for optimal parameters involved in the BP neural network to avoid local optimization and improve the accuracy and efficiency of prediction. Finally, an instance analysis is carried out for verification, and the result indicates that the parking demand prediction accuracy of the MRA-BAS-BP algorithm is higher than the prediction accuracy of the traditional algorithm.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3