Numerical Simulation Research on Hydraulic Fracturing Promoting Coalbed Methane Extraction

Author:

Yongpeng Fan123,Longyong Shu2ORCID,Zhonggang Huo2,Jinwei Hao2,Li Yang2

Affiliation:

1. China Coal Research Institute, Beijing 100013, China

2. Mine Safety Technology Branch, China Coal Research Institute, Beijing 100013, China

3. College of Mining Engineering, Liaoning Technical University, Fuxin 123000, China

Abstract

Although hydraulic fracturing technology has been comprehensively investigated, few scholars have studied the influence of hydraulic fracturing on the effect of coalbed methane (CBM) extraction, and few considered the interaction between water and CBM in the research process, which is not conducive to guiding the engineering design of hydraulic fracturing wells. In this work, a hydraulic-mechanical-thermal coupled model for CBM extraction in hydraulic fracturing well is established; it combines gas-liquid two-phase infiltration, where nonisothermal adsorption is also considered. The COMSOL Multiphysics software is used to carry out the numerical simulation study of the CBM extraction process in hydraulic fracturing well and analyze the influence of coalbed permeability, initial methane pressure, and fracture length on CBM extraction in hydraulic fracturing well, and the results show that the hydraulic-mechanical-thermal coupled model for CBM extraction can be used for CBM extraction research in hydraulic fracturing well. The initial coalbed permeability, initial gas pressure, and fracture length all affect the migration speed of CBM to surface well in different ways and have a greater impact on the CBM production rate of hydraulic fracturing well. The greater the initial coalbed permeability and methane pressure are, the longer the fracture length is and the greater the CMB production rate of hydraulic fracturing well is. The change trend of coalbed permeability during the extraction process of surface fracturing well is directly related to the state of the reservoir. The factors of stress, temperature, and CBM desorption jointly determine the increase or decrease of coal seam permeability.

Funder

National Key Research and Development Project

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3