Analysis of methane diffusion on permeability rebound and recovery in coal reservoirs: Implications for deep coalbed methane-enhanced extraction

Author:

Su ErleiORCID,Zhu XinyuORCID,Chen XiangjunORCID,Zou QuanleORCID,Yang Kang,Chen Haidong,Wei JiaqiORCID

Abstract

A proper understanding of the effect of methane diffusion on coal reservoir permeability rebound and recovery is essential, as coal reservoir permeability is the key parameter influencing the efficiency of coalbed methane migration and computational research on it is lacking. In this paper, the multifield coupling model for methane migration was established. Then, two parameters, the influence coefficient of diffusion on permeability rebound (DPRB) and the influence coefficient of diffusion on permeability recovery (DPRC), were proposed to quantify the effect of methane diffusion on rebound and recovery of coal reservoir permeability. Subsequently, we used COMSOL software to study the variation rules of the coal reservoir permeability rebound time, permeability recovery time, and permeability rebound value, DPRB, and DPRC for different geologic parameters. The results shown that the permeability rebound time and recovery time are proportional to the coal seam initial pressure, but inversely proportional to the initial permeability and initial diffusion coefficient. The rebound value decreases with increasing coal seam initial pressure and initial permeability, but ascends with rising initial diffusion coefficient. DPRB declines with increasing coal seam initial pressure, initial permeability, and initial diffusion coefficient, but they are all greater than 0.7, indicating that methane diffusion has a significant effect on permeability rebound. The DPRC values for different coal seam initial pressures, initial permeabilities, and initial diffusion coefficients are above 0.98, which implies that methane diffusion dominates the permeability recovery process. Finally, a conceptual model was presented to research the mechanism of diffusion influence on rebound and recovery of coal reservoir permeability, and the implications for enhanced drainage of deep coalbed methane were discussed. Therefore, the results of this paper can provide a theoretical foundation for deep coalbed methane-enhanced extraction.

Funder

National Natural Science Foundation of China

Henan Outstanding Youth Funds

Postdoctoral Research Foundation of China

Henan University Science and Technology Innovation Team

Henan Provincial Science and Technology Research Project

Safety Discipline Creation Project of HPU

Henan Postdoctoral Science Foundation

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3