An Advanced Early-Stage Production Forecasting Model for Middle-High Rank Coal Development

Author:

Yuan Zhiwang1ORCID,Liu Yancheng2,Wu Hao1,Zhang Yifan3,Gao Yufei1,Zhang Xu1

Affiliation:

1. CNOOC Research Institute Co., Ltd., Beijing, China

2. China United Coalbed Methane Co., Ltd., Beijing, China

3. Beijing Petroleum Machinery Co., Ltd., Changping, Beijing, China

Abstract

Reasonable production prediction of coalbed methane (CBM) is of great significance for improving the economic benefit of CBM reservoirs. Current prediction methods for CBM production focus on the later stages of development, with few studies on early production forecasting. The objective of this work is to provide a reliable new idea for the early production prediction of CBM through various analyses and demonstrations. First, the CBM development modes are classified according to the production characteristics of the Panhe demonstration block of Shaanxi Province, China. Second, an efficient and feasible early production prediction model is established based on the geological potential and development potential. Finally, using the proposed model, different modes’ production characteristics and optimization strategies are analyzed. The research shows that the gas production profiles can be divided into two modes: single-peak mode (SPM) and multipeak mode (MPM). The peak production and average EUR of the SPM are 49.6% and 32.4% higher than those of the MPM, but the stable production period is only 0.2~1 year. In terms of the geological potential of CBM wells, the gas content, critical desorption pressure, and formation coefficient of the SPM are 6.7%, 13.3%, and 37.8% higher than those of the MPM, and the gas wells are mainly located in the high part of the coal seam (the average height difference is about 20 m). Besides, the concept of quasidesorption degree Pdq is innovatively introduced to characterize the development potential of gas well. The Pdq has an exponential relationship with CBM production, and the coefficient of the exponential term in SPM is approximately 22% larger than that in MPM. Moreover, the production of gas wells is greatly affected by the continuity of production. In the process of gas production, the influence of factors such as equipment shutdown should be minimized. To examine the applicability of the proposed method, the model is applied to an actual CBM well in Panhe, and the prediction accuracy is higher than 85%.

Funder

National Science and Technology Major Project

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3