Affiliation:
1. School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract
In order to achieve better motion accuracy and higher robustness of the shipborne rocket launcher position servo system driven by a permanent magnet synchronous motor (PMSM), a passivity-based controller based on active disturbance rejection control (ADRC) optimized by improved particle swarm optimization-back propagation (IPSO-BP) algorithm is proposed in this paper. The convenient method of interconnection and damping assignment and passivity-based control (IDA-PBC) is adopted to establish the port controlled Hamiltonian system with dissipation (PCHD) model of PMSM. To further enhance the robustness and adaptability of traditional ADRC, an BP algorithm is introduced to on-line update the proportional, integral, and derivative gains of ADRC. Furthermore, to improve the learning capability, the improved PSO algorithm is adopted to optimize the learning rates of the back propagation neural networks. The results of numerical simulation and prototype test indicate that the proposed IPSO-BP-ADRC-PBC controller has better static and dynamic performance than the ADRC-PBC and BP-ADRC-PBC controller with fixed learning rate.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献