Composite ADRC Speed Control Method Based on LTDRO Feedforward Compensation

Author:

Jin Rencheng1ORCID,Wang Junwei1,Ou Yangyi1,Li Jianzhang1

Affiliation:

1. Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian 116024, China

Abstract

The performance of the extended state observer (ESO) in an Active Disturbance Rejection Control (ADRC) is limited by the operational load in stepper motor control, which has high real-time requirements and may cause delays. Additionally, the complexity of parameter tuning, especially in high-order systems, further limits the ESO’s performance. This paper proposes a composite ADRC (LTDRO-ADRC) based on a load torque dimensionality reduction observer (LTDRO). Firstly, the LTDRO is designed to estimate abrupt load disturbances that are difficult to compensate for using the ESO. Secondly, the transfer function under the double-closed loop is deduced. Additionally, the LTDRO uses a magnetic encoder to gather the system state and calculate the load torque. It then outputs a compensating current feedforward to the current loop input. This method reduces the delay and complexity of the ESO, improving the response speed of the ADRC speed ring and the overall response of the system to load changes. Simulation and experimental results demonstrate that it significantly enhances dynamic control performance and steady-state errors. LTDRO-ADRC can stabilize the speed again within 49 ms and 17 ms, respectively, in the face of sudden load increase and sudden load removal. At the same time, in terms of steady-state error, compared with ADRC and CADRC, they have increased by 94% and 88%, respectively. In terms of zero-speed starting motors, the response speed is increased by 58% compared to a traditional ADRC.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3