Author:
Wang Jinyu,Miao Qiang,Zhou Xiaomin,Sun Lipeng,Gao Dawei,Lu Haifeng
Abstract
Due to the frequently changing working conditions and complex operating environment of electric vehicle permanent magnet synchronous motor(PMSM), the motor parameters change dramatically. However, the performance of the PI current regulator, which is the most widely used, is sensitive to motor parameters and has weak robustness, which will lead to the deterioration of motor control system performance. To address this problem, active disturbance rejection control (ADRC) technology is applied to the PMSM current loop control. Firstly, the traditional ADRC current regulator is designed, and the performance and parameter tuning laws of the extended state observer are analyzed by the method of frequency domain analysis. Then, the traditional ADRC algorithm is improved in three aspects: observation error compensation, utilization of model information and anti-windup. After that, simulations and bench test validation are performed. The simulation results show that the improved ADRC current regulator is more robust in the face of parameter changes. The torque step test results show that the improved ADRC current regulator has fast dynamic response without overshoot and has high robustness when the motor parameters change. The dynamic test results show that the improved ADRC current regulator has high robustness when the load, speed and motor parameters change, and the anti-windup measures designed can effectively overcome the integral saturation phenomenon.
Funder
Tsinghua University-Weichai Power Intelligent Manufacturing Joint Research Institute
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献