Linear Active Disturbance Rejection Control-Based Diagonal Recurrent Neural Network for Radar Position Servo Systems with Dead Zone and Friction

Author:

Cui Shuai,Zhu Guixin,Zhao Tong

Abstract

This paper proposes a control scheme for the radar position servo system facing dead zone and friction nonlinearities. The controller consists of the linear active disturbance rejection controller (LADRC) and diagonal recurrent neural network (DRNN). The LADRC is designed to estimate in real time and compensate for the disturbance with vast matched and mismatched uncertainties, including the internal dead zone and friction nonlinearities and external noise disturbance. The DRNN is introduced to optimize the parameters in the linear state error feedback (LSEF) of the LADRC in real time and estimate the model information, namely Jacobian information, of the plant on-line. In addition, considering the Cauchy distribution, an adaptive tracking differentiator (ATD) is designed in order to manage the contradiction between filtering performance and tracking speed, which is introduced to the LADRC. Another novel idea is that the back propagation neuron network (BPNN) is also introduced to tune the parameters of the LADRC, just as in the DRNN, and the comparison results show that the DRNN is more suitable for high precision control due to its feedback structure compared with the static BPNN. Moreover, the regular controller performances and robust performance of the proposed control approach are verified based on the radar position servo system by MATLAB simulations.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3