Surface to Groundwater Interactions beneath the City of Berlin: Results from 3D Models

Author:

Frick Maximilian12ORCID,Scheck-Wenderoth Magdalena13,Schneider Michael2,Cacace Mauro1ORCID

Affiliation:

1. Section 6.1: Basin Modelling, GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany

2. Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany

3. RWTH Aachen University, Institute of Geology and Geochemistry of Petroleum and Coal, Lochnerstrasse 4-20, 52056 Aachen, Germany

Abstract

Knowing the thermal and hydraulic conditions below major urban centers is of increasing importance in the context of energy and water supply. With this study, focusing on the major urban center of Berlin, Germany, we aim to gain insights on the coupling of surface water bodies to the subsurface thermal and hydraulic field investigating shallow water to deep groundwater interactions. Therefore, we use a 3D structural model of the subsurface, constrained by all available data and observations, as a base for simulations of the coupled transport of fluid and heat. This model resolves the 3D configuration of the main geological units and thus enables us to account for related heterogeneities in physical properties. Additionally, we resolve surface water body geometries with newly available data. To assess how surface water bodies interact with the deeper groundwater at different depths in the model domain, the influence of different hydraulic boundary conditions is quantified, which indicates that the coupling of surface water bodies and groundwater strongly modifies predicted groundwater circulation. Consequently, changes in subsurface temperatures are also predicted, where lakes may account for temperature differences up to ±5°C and rivers could account for up to ±1°C visible at depths ≤-500 m.a.s.l. These differences are mainly connected to changes in the advective component of heat transport caused by the modifications of the hydraulic boundary condition. Pressure-driven heat transport is most efficient where differences between hydraulic heads of aquifers and surface water bodies are highest. This study therefore illustrates the impact of surface to subsurface water interactions in an urban context.

Funder

Waterways and Shipping Office

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3