Affiliation:
1. IGB Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Berlin Germany
2. Geographisches Institut Humboldt University Berlin Berlin Germany
3. Northern Rivers Institute, School of Geosciences University of Aberdeen Aberdeen UK
4. Institute of Applied Geosciences Technische Universität Berlin Berlin Germany
Abstract
AbstractIncreased urbanization, coupled with the projected impacts of climatic change, mandates further evaluation of the impact of urban development on water flow paths to guide sustainable land‐use planning. Though the general urbanization impacts of increased storm runoff peaks and reduced baseflows are well known; how the complex, non‐stationary interaction of the dominant water fluxes within dynamic urban water stores sustain streamflow regimes over longer periods of time is less well quantified. In particular, there is a challenge in how hydrological modelling should integrate the juxtaposition of rapid and slower flow pathways of the urban ‘karst’ landscape and different approaches need evaluation. In this context, we utilized hydrological and water stable isotope datasets within a modelling framework that combined the commonly used Hydrologic Engineering Center Hydrological Modelling System (HEC‐HMS) urban runoff model along with a simple hydrological tracer module and transit time modelling to evaluate the spatial and temporal variation of water flow paths and ages within a heavily urbanized 217 km2 catchment in Berlin, Germany. Deeper groundwater was the primary flow component in the upper reaches of the catchment within fewer urbanized regions, while the addition of wastewater effluent in the mid‐reaches of the catchment was the dominant water supply to sustain baseflow in the lower main stem stream, with additional direct storm runoff and shallow subsurface contributions in the more urbanized lower reaches. Water ages from each modelling approach mirrored flow contributions and water age mixing potential in subsurface storage; with older average water and lower young water contributions in less urbanized sub‐catchments and younger average water and higher young water contributions in more urbanized regions. The results from the first step towards more integrated tracer‐aided hydrologic modelling tools for similar peri‐urban catchments, given the potential limitations of simpler model frameworks. The results have broader implications for assessing the uncertainty in evaluating urban impacts on hydrological function under environmental change.
Funder
Federal Ministry of Education and Research
Deutsche Forschungsgemeinschaft
Einstein Stiftung Berlin
Leverhulme Trust
Subject
Water Science and Technology
Reference76 articles.
1. Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall–Runoff) model
2. Allen R. G. Pereira L. S. Raes D. &Smith M.(1998).Crop evapotranspiration—guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper (FAO) (56): 300p.
3. Altersdatierung mittels Isotopenanalytik zur Verweilzeitbestimmung und Identifizierung von Speisungsanteilen des Grundwassers in Brandenburg;Bednorz F.;Brandenburgische Geowissenschaftliche Beiträge,2017
4. Continuous Soil Moisture Accounting in the Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献