Urban subsurface exploration improved by denoising of virtual shot gathers from distributed acoustic sensing ambient noise

Author:

Ehsaninezhad Leila12ORCID,Wollin Christopher1,Rodríguez Tribaldos Verónica1,Schwarz Benjamin3ORCID,Krawczyk Charlotte M12

Affiliation:

1. German Research Centre for Geosciences (GFZ) , 14473 Potsdam , Germany

2. Institute of Applied Geosciences, Technical University of Berlin , 10623 Berlin , Germany

3. Fraunhofer Institute for Wind Energy Systems (IWES) , 27572 Bremen , Germany

Abstract

SUMMARY Ambient noise tomography on the basis of distributed acoustic sensing (DAS) deployed on existing telecommunication networks provides an opportunity to image the urban subsurface at regional scales and high-resolution. This capability has important implications in the assessment of the urban subsurface’s potential for sustainable and safe utilization, such as geothermal development. However, extracting coherent seismic signals from the DAS ambient wavefield in urban environments at low cost remains a challenge. One obstacle is the presence of complex sources of noise in urban environments, which may not be homogeneously distributed. Consequently, long recordings are required for the calculation of high-quality virtual shot gathers, which necessitates significant time and computational cost. In this paper, we present the analysis of 15 d of DAS data recorded on a pre-existing fibre optic cable (dark fibres), running along an 11-km-long major road in urban Berlin (Germany), hosting heavy traffic including vehicles and trains. To retrieve virtual shot gathers, we apply interferometric analysis based on the cross-correlation approach where we exclude low-quality virtual shot gathers to increase the signal-to-noise ratio of the stacked gathers. Moreover, we modify the conventional ambient noise interferometry workflow by incorporating a coherence-based enhancement approach designed for wavefield data recorded with large-N arrays. We then conduct multichannel analysis of surface waves to retrieve 1-D velocity models for two exemplary fibre subsegments, and compare the results of the conventional and modified workflows. The resulting 1-D velocity models correspond well with available lithology information. The modified workflow yields improved dispersion spectra, particularly in the low-frequency band (<1 Hz) of the signal. This leads to an increased investigation depth along with lower uncertainties in the inversion result. Additionally, these improved results were achieved using significantly less data than required using conventional approaches, thus opening the opportunity for shortening required acquisition times and accordingly lowering costs.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3