A unified wavefield-partitioning approach for distributed acoustic sensing

Author:

Atterholt James1,Zhan Zhongwen1,Shen Zhichao1,Li Zefeng1

Affiliation:

1. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

SUMMARY While distributed acoustic sensing (DAS) has been demonstrated to have great potential in seismology, DAS data often have much higher levels of stochastic and coherent noise (e.g. instrument noise, traffic vibrations) than data collected by traditional seismometers. The linearly, densely spaced nature of DAS arrays presents a suite of opportunities for more innovative processing techniques that can be used to address this issue. One way to take advantage of DAS’s array architecture is through the use of curvelets. Curvelets have a non-uniform scaling property that makes them an excellent tool for representing images with discontinuities along piecewise, twice continuously differentiable curves. This anisotropic scaling property makes curvelets an ideal processing tool for DAS data, for which the measured wavefield can be represented as an image composed of curved features. Here, we use the curvelet frame as a tool for the manipulation of DAS signal and demonstrate how this manipulation can improve our ability to identify important features in DAS data sets. We use the curvelet representation to partition the measured wavefield using DAS data collected near Ridgecrest, CA, following the 2019 Mw7.1 Ridgecrest earthquake. Here, we isolate the earthquake-induced wavefield from coherent and stochastic noise using the curvelet frame in an effort to improve the results of template matching of the Ridgecrest aftershock sequence. We show that our wavefield-partitioning technique facilitates the identification of over 30 per cent more aftershocks and greatly reduces the magnitude of diurnal depressions in the aftershock catalogue due to cultural noise.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference34 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3