Plasticity of the Primary Motor Cortex in Patients with Primary Brain Tumors

Author:

Kong Nathan W.1,Gibb William R.2,Badhe Suvarna3,Liu Benjamin P.3,Tate Matthew C.4ORCID

Affiliation:

1. Department of Medicine, University of Chicago, Pritzker School of Medicine, Chicago, IL, USA

2. Department of Emergency Medicine, Stanford University, Palo Alto, CA, USA

3. Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

4. Departments of Neurological Surgery and Neurology, Northwestern University Feinberg School of Medicine, Chicago IL, USA

Abstract

There are two neuron-level mechanisms proposed to underlie neural plasticity: recruiting neurons nearby to support the lost function (ipsilesional plasticity) and uncovering latent pathways that can assume the function that was lost (contralesional plasticity). While both patterns have been demonstrated in patient groups following injury, the specific mechanisms underlying each mode of plasticity are poorly understood. In a retrospective case series of 13 patients, we utilize a novel paradigm that analyzes serial fMRI scans in patients harboring intrinsic brain tumors that vary in location and growth kinetics to better understand the mechanisms underlying these two modes of plasticity in the human primary motor cortex. Twelve patients in our series had some degree of primary motor cortex plasticity, an area previously thought to have limited plasticity. Patients harboring smaller lesions with slower growth kinetics and increasing distance from the primary motor region demonstrated recruitment of ipsilateral motor regions. Conversely, larger, faster-growing lesions in close proximity to the primary motor region were associated with activation of the contralesional primary motor cortex, along with increased activation of the supplementary motor area. These data increase our understanding of the adaptive abilities of the brain and may lead to improved treatment strategies for those suffering from motor loss secondary to brain injuries.

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3