Central nervous system regulation of diffuse glioma growth and invasion: from single unit physiology to circuit remodeling

Author:

Picart ThiebaudORCID,Hervey-Jumper ShawnORCID

Abstract

Abstract Purpose Understanding the complex bidirectional interactions between neurons and glioma cells could help to identify new therapeutic targets. Herein, the techniques and application of novel neuroscience tools implemented to study the complex interactions between brain and malignant gliomas, their results, and the potential therapeutic opportunities were reviewed. Methods Literature search was performed on PubMed between 2001 and 2023 using the keywords “glioma”, “glioblastoma”, “circuit remodeling”, “plasticity”, “neuron networks” and “cortical networks”. Studies including grade 2 to 4 gliomas, diffuse midline gliomas, and diffuse intrinsic pontine gliomas were considered. Results Glioma cells are connected through tumour microtubes and form a highly connected network within which pacemaker cells drive tumorigenesis. Unconnected cells have increased invasion capabilities. Glioma cells are also synaptically integrated within neural circuitry. Neurons promote tumour growth via paracrine and direct electrochemical mechanisms, including glutamatergic AMPA-receptors. Increased glutamate release in the tumor microenvironment and loss of peritumoral GABAergic inhibitory interneurons result in network hyperexcitability and secondary epilepsy. Functional imaging, local field potentials and subcortical mapping, performed in awake patients, have defined patterns of malignant circuit remodeling. Glioma-induced remodeling is frequent in language and even motor cortical networks, depending on tumour biological parameters, and influences functional outcomes. Conclusion These data offer new insights into glioma tumorigenesis. Future work will be needed to understand how tumor intrinsic molecular drivers influence neuron-glioma interactions but also to integrate these results to design new therapeutic options for patients.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3