Transcranial magnetic stimulation (TMS) seeded tractography provides superior prediction of eloquence compared to anatomic seeded tractography

Author:

Muir Matthew1,Prinsloo Sarah1,Michener Hayley1,Shetty Arya1,de Almeida Bastos Dhiego Chaves2,Traylor Jeffrey3,Ene Chibawanye1,Tummala Sudhakar4,Kumar Vinodh A5,Prabhu Sujit S1

Affiliation:

1. Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA

2. Department of Neurosurgery, Cleveland Clinic , Cleveland, Ohio , USA

3. Department of Neurological Surgery, The University of Texas Southwestern Medical Center , Dallas, Texas , USA

4. Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center , Houston, Texas, USA

5. Department of Neuroradiology, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA

Abstract

Abstract Background For patients with brain tumors, maximizing the extent of resection while minimizing postoperative neurological morbidity requires accurate preoperative identification of eloquent structures. Recent studies have provided evidence that anatomy may not always predict eloquence. In this study, we directly compare transcranial magnetic stimulation (TMS) data combined with tractography to traditional anatomic grading criteria for predicting permanent deficits in patients with motor eloquent gliomas. Methods We selected a cohort of 42 glioma patients with perirolandic tumors who underwent preoperative TMS mapping with subsequent resection and intraoperative mapping. We collected clinical outcome data from their chart with the primary outcome being new or worsened motor deficit present at 3 month follow up, termed “permanent deficit”. We overlayed the postoperative resection cavity onto the preoperative MRI containing preoperative imaging features. Results Almost half of the patients showed TMS positive points significantly displaced from the precentral gyrus, indicating tumor induced neuroplasticity. In multivariate regression, resection of TMS points was significantly predictive of permanent deficits while the resection of the precentral gyrus was not. TMS tractography showed significantly greater predictive value for permanent deficits compared to anatomic tractography, regardless of the fractional anisotropic (FA) threshold. For the best performing FA threshold of each modality, TMS tractography provided both higher positive and negative predictive value for identifying true nonresectable, eloquent cortical and subcortical structures. Conclusion TMS has emerged as a preoperative mapping modality capable of capturing tumor induced plastic reorganization, challenging traditional presurgical imaging modalities.

Publisher

Oxford University Press (OUP)

Subject

Electrical and Electronic Engineering,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3