Affiliation:
1. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
2. Department of Infrastructure Engineering of the University of Melbourne, Melbourne 3010, Australia
Abstract
The fusion of ultra-wideband (UWB) and inertial measurement unit (IMU) is an effective solution to overcome the challenges of UWB in nonline-of-sight (NLOS) conditions and error accumulation of inertial positioning in indoor environments. However, existing systems are based on foot-mounted or body-worn IMUs, which limit the application of the system to specific practical scenarios. In this paper, we propose the fusion of UWB and pedestrian dead reckoning (PDR) using smartphone IMU, which has the potential to provide a universal solution to indoor positioning. The PDR algorithm is based on low-pass filtering of acceleration data and time thresholding to estimate the step length. According to different movement patterns of pedestrians, such as walking and running, several step models are comparatively analyzed to determine the appropriate model and related parameters of the step length. For the PDR direction calculation, the Madgwick algorithm is adopted to improve the calculation accuracy of the heading algorithm. The proposed UWB/PDR fusion algorithm is based on the extended Kalman filter (EKF), in which the Mahalanobis distance from the observation to the prior distribution is used to suppress the influence of abnormal UWB data on the positioning results. Experimental results show that the algorithm is robust to the intermittent noise, continuous noise, signal interruption, and other abnormalities of the UWB data.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,Computer Science Applications
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献