Discovering Insightful Rules among Truck Crash Characteristics using Apriori Algorithm

Author:

Hong Jungyeol1ORCID,Tamakloe Reuben1ORCID,Park Dongjoo1ORCID

Affiliation:

1. Department of Transportation Engineering, The University of Seoul, 163 Seoulsiripdae-ro Dongdaemun-gu, Seoul 02504, Republic of Korea

Abstract

This study aims to discover hidden patterns and potential relationships in risk factors in freight truck crash data. Existing studies mainly used parametric models to analyze the causes of freight vehicle crashes. However, predetermined assumptions and underlying relationships between independent and dependent variables have been cited as its limitations. To overcome these limitations and provide a better understanding of factors that lead to truck crashes on the expressways, we applied the Association Rules Mining (ARM) technique, which is a nonparametric method. ARM quantifies the interrelationships between the antecedents and consequents of truck-involved crashes and provides researchers with the most influential set of factors that leads to crashes. We utilized a freight vehicle-involved crash data consisting of 19,038 crashes that occurred on the Korean expressways from 2008 to 2017 for this investigation. From the data, 90,951 association rules were generated through ARM employing the Apriori algorithm. The lift values estimated by the Apriori algorithm showed the strength of association between risk factors, and based on the estimated lift values, we identified key crash contributory factors that lead to truck-involved crashes at various segment types, under different weather conditions, considering the driver’s age, crash type, driver’s faults, vehicle size, and roadway geometry type. From the generated rules, we demonstrated that overspeeding with medium-weight trucks was highly associated with crashes during the rainy weather, whereas drowsy driving during the evening was correlated with crashes during fine weather. Segment-related crashes were mainly associated with driver’s faults and roadway geometry. Our results present useful insights and suggestions that can be used by transport stakeholders, including policymakers and researchers, to create relevant policies that will help reduce freight truck crashes on the expressways.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3