Research on Literary Translation Based on the Improved Optimization Model

Author:

Liu Hongjian12ORCID

Affiliation:

1. School of English Language and Culture, Xi’an Fanyi University, Xi’an 710105, China

2. Faculty of Educational Studies, Universiti Putra Malaysia, Serdang 43400, Malaysia

Abstract

Machine translation is widely used in people’s daily lives and production, occupying an important position. In order to improve the accuracy of the literary intelligent translation, research on literary intelligent translation is based on the improved optimization model. Based on semantic features, the semantic ontology optimization model including an encoder and a decoder is created by machine translation. In order to improve the accuracy of the intelligent translation literature of the semantic ontology optimization model, the conversion layer, including the forward neural network layer, residual connection layer, and normalization layer, is added between the encoder and decoder of the semantic ontology optimization model. An improved optimization model is established, and syntax conversion is realized by using the conversion layer, which completes the intelligent translation of literature. It is found that the BLEU value of using this method to translate literary sentences can reach 17.23 when the number of training steps is set as 8000, and the training time is low. The translation result has a low correlation misalignment rate, which can meet the user’s literary translation needs.

Funder

Xi’an Fanyi University

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Reference15 articles.

1. Overseas translation and introduction of Chinese literature from the perspective of complex systems—taking the translation and introduction of Shaanxi contemporary literature as an example;H. Han;Shanghai Translators,2019

2. Artificial intelligence translation and world literature;F. Tao;Journal of Humanities,2019

3. Australian English Bilingual Corpus: Automatic forced-alignment accuracy in Russian and English

4. Amplification and Description Techniques in the Translation of Arabic Phrases in Matan Al-Ghayah wa Al-Taqrib

5. Neural machine translation of low-resource languages using SMT phrase pair injection

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3