Affiliation:
1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
2. Shenyang Shengna Equipment Manufacturing Technology Institute Co., Ltd., Shenyang 110200, China
Abstract
Effective fault diagnosis methods can ensure the safe and reliable operation of the machines. In recent years, deep learning technology has been applied to diagnose various mechanical equipment faults. However, in real industries, the data distribution under different working conditions is often different, which leads to serious degradation of diagnostic performance. In order to solve the issue, this study proposes a new deep convolutional domain adaptation network (DCDAN) method for bearing fault diagnosis. This method implements cross-domain fault diagnosis by using the labeled source domain data and the unlabeled target domain data as training data. In DCDAN, firstly, a convolutional neural network is applied to extract features of source domain data and target domain data. Then, the domain distribution discrepancy is reduced through minimizing probability distribution distance of multiple kernel maximum mean discrepancies (MK-MMD) and maximizing the domain recognition error of domain classifier. Finally, the source domain classification error is minimized. Extensive experiments on two rolling bearing datasets verify that the proposed method can implement accurate cross-domain fault diagnosis under different working conditions. The study may provide a promising tool for bearing fault diagnosis under different working conditions.
Funder
Fundamental Research Funds for the Central Universities
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献