Lightweight Knowledge Distillation-Based Transfer Learning Framework for Rolling Bearing Fault Diagnosis

Author:

Lu Ruijia1,Liu Shuzhi1ORCID,Gong Zisu1,Xu Chengcheng1,Ma Zonghe1,Zhong Yiqi1,Li Baojian1

Affiliation:

1. School of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China

Abstract

Compared to fault diagnosis across operating conditions, the differences in data distribution between devices are more pronounced and better aligned with practical application needs. However, current research on transfer learning inadequately addresses fault diagnosis issues across devices. To better balance the relationship between computational resources and diagnostic accuracy, a knowledge distillation-based lightweight transfer learning framework for rolling bearing diagnosis is proposed in this study. Specifically, a deep teacher–student model based on variable-scale residual networks is constructed to learn domain-invariant features relevant to fault classification within both the source and target domain data. Subsequently, a knowledge distillation framework incorporating a temperature factor is established to transfer fault features learned by the large teacher model in the source domain to the smaller student model, thereby reducing computational and parameter overhead. Finally, a multi-kernel domain adaptation method is employed to capture the feature probability distribution distance of fault characteristics between the source and target domains in Reproducing Kernel Hilbert Space (RKHS), and domain-invariant features are learned by minimizing the distribution distance between them. The effectiveness and applicability of the proposed method in situations of incomplete data across device types were validated through two engineering cases, spanning device models and transitioning from laboratory equipment to real-world operational devices.

Funder

Natural Science Foundation Youth Foundation of Shandong Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3