Dual-path multi-scale attention residual network for fault diagnosis of rolling bearings under complex operating conditions

Author:

Deng Linfeng,Zhang YuanwenORCID,Zhao ChengORCID,Wang GuojunORCID

Abstract

Abstract Rolling bearing faults inevitably occur during the long-term continuous operation of rotating machinery. Therefore, fault diagnosis is greatly important for ensuring the normal and safe operation of rolling bearings. However, the complexity and diversity of working conditions of rolling bearings present a significant challenge in extracting fault characteristics accurately, which further affects the ultimate fault diagnosis results. In this article, we propose a new model, called dual-path multi-scale attention residual network (DPMARN), for diagnosing bearing faults under complex operating conditions. DPMARN can effectively capture the feature-feature correlation information at different scales, which is more beneficial for fusing fault features at different scales to improve the model’s performance. The main contributions of this work are summarized as follows: (1) the designed dual-path network model which incorporates parallel multi-scale branches of convolutional kernels and serially connects skip-layer multi-scale branches can integrate both low-frequency and high-frequency information and enhance the multi-scale feature extraction and complex data representation abilities. (2) The squeeze-and-excitation attention mechanism is embedded into the residual blocks to improve the ability of learning feature correlations and utilizing feature information effectively, which is helpful for extracting important fault characteristics. Extensive experiments conducted on two public bearing datasets demonstrate the superior performance of the DPMARN model for addressing the complex fault diagnosis problem. These results indicate that our proposed approach provides an effective solution for fault diagnosis of rolling bearings under complex operating conditions.

Funder

National Natural Science Foundation of China

Key Program of Natural Science Foundation of Gansu Province

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3