Development of Date Pit–Polystyrene Thermoplastic Heat Insulator Material: Physical and Thermal Properties

Author:

Abu-Jdayil Basim12ORCID,Hittini Waseem3,Mourad Abdel-Hamid3ORCID

Affiliation:

1. Chemical and Petroleum Engineering Department, United Arab Emirates University, 15551, Al Ain, Abu Dhabi, UAE

2. Emirates Center for Energy and Environment Research, United Arab Emirates University, 15551, Al Ain, Abu Dhabi, UAE

3. Mechanical Engineering Department, United Arab Emirates University, 15551, Al Ain, Abu Dhabi, UAE

Abstract

This study is aimed at developing a thermoplastic composite based on date pit powder waste for use as a thermal insulator in building industries. Date pits are the by-product of date stoning, either for the production of pitted dates or for the manufacture of date paste. The date pit powder (DPP) used in this study was obtained from the UAE University farm in Al Foah, UAE. DPP waste contents ranging from 0 wt.% to 50 wt.% were used to prepare the DPP-polystyrene composite. Date pit powder was mixed with polystyrene using a melt extruder, and then the mixture was transferred to the hot press to produce the final sample. The thermal and physical characteristics of the produced composites were measured experimentally and analyzed theoretically in terms of date pit and polystyrene properties. The characterized properties of the DPP-polystyrene composites, namely, density, thermal conductivity, water retention, thermal stability, and microstructure, showed that a stable composite material with insulation and construction capacity can be formed by the addition of date pit powder to the polystyrene matrix. The theoretical modeling of the measured thermal conductivity and the scanning electron microscope (SEM) monographs supported the hypothesis of date pit agglomeration in the composite matrix. The prepared composites showed low thermal conductivity (0.0515-0.0562 W/mK at 25°C) and very low density (457-630 kg/m3), thus demonstrating their potential for use as a thermal insulator for building materials. In addition, replacing one-third of the classical construction wall content with DPP-polystyrene composite showed promise for constructive applications as a thermal insulator with 85% reduction in the overall thermal conductivity. Indeed, these properties are similar to those of other conventional insulating materials. This will lead to produce an inexpensive insulation material that exploits a common waste product in date fruit-producing countries.

Funder

United Arab Emirates University

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3