Utilizing almond shell filler to improve strength and sustainability of jute fiber composites

Author:

Çetin Ahmet12ORCID

Affiliation:

1. Department of Mechanical Engineering Adiyaman University Adıyaman Turkey

2. Department of Mechanical Engineering Çukurova University Adana Turkey

Abstract

AbstractIn recent years, natural fibers have begun to replace synthetic fibers in automotive, building, and marine applications because of their sustainability, renewability, low cost, and availability of raw materials. However, because of their low strength, biocomposites are strengthened by hybridization with stronger synthetic fibers or adding fillers. This study reinforced high‐cellulose jute fiber composites with cellulose‐based almond (Prunus amygdalus) shell filler (ASF). Natural waste almond shells were ground to microparticle size. Hybrid composites were prepared by adding microparticulate ASF to the jute fiber composites at 0%, 1.5%, 3%, 4.5%, and 6% by weight. A comprehensive experimental study included tensile, flexural, Charpy impact (flat and edgewise), and shear tests. The addition of ASF significantly improved the mechanical properties of the jute fiber composites, and the best values were obtained with 3 wt.% ASF addition. Tensile, flexural, impact, and shear properties increased by 48.2%, 63.5%, 24.4%, and 52.2%, respectively. Scanning Electron microscopy (SEM) micrographs used in morphological structural analysis prove that the high mechanical values are achieved by ASF strengthening the interlaminar adhesion. This study contributed to developing a hybrid natural composite material reinforced with natural fillers that is stronger, environmentally friendly, and sustainable.Highlights The organic structure of Almond Shell Filler (ASF) ensured the sustainability of natural composites. Cellulosic ASF significantly contributed to the structural stiffness and strength of jute fiber composites. ASF reduced voids, improved fiber‐matrix bonding, and prevented debonding and delamination. ASF optimized the mechanical performance of jute fiber composites at 3%.

Funder

Adiyaman Üniversitesi

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3