Identification Dockless Bike-Sharing and Metro Transfer Travelers through Mobility Chain

Author:

Li Xiang1,Yan Qipeng1,Tang Yixiong1,Luo Chen2ORCID

Affiliation:

1. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 611756, China

2. College of Air Traffic Management, Civil Aviation Flight University of China, Deyang 618307, China

Abstract

The burgeoning dockless bike-sharing system presents a promising solution to the first- and last-mile transportation challenge by connecting trip origins/destinations to metro stations. However, the differentiation between metro passengers and DBS riders, as they belong to distinct systems, hinders the precise identification of DBS-metro transfers. This study introduces an innovative method employing mobility chains to establish spatiotemporal relationships, including spatiotemporal conflicts and similarities, among potential users from both systems. This significantly enhances the precision of user matching. An empirical study in Chengdu validates the method’s increased accuracy and examines travel patterns, yielding the following insights: (1) Introduction of the mobility chain reduces average matched pairs by 28.27% and improves accuracy by 18.36%. The addition of spatial-temporal similarity further boosts accuracy by 19.32%. (2) Median distances for DBS-metro access and egress transfers are approximately 950 meters. Short trips of 650–750 meters are prevalent, while trips exceeding 1.5 kilometers lead passengers to opt for alternative modes. (3) Temporal patterns reveal weekday peaks at 8:00, 9:00, and 17:00. On weekends, transfers are uniformly distributed, mainly within urban areas. Suburban stations exhibit reduced weekend activity. These findings can provide valuable insights for enhancing DBS bicycle redistribution, promoting transportation mode integration, and fostering urban transportation’s sustainable development.

Funder

Chengdu Key Research and Development Support Program for Technological Innovation and Development Projects

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3