Experimental Study on Track-Bridge Interactions for Direct Fixation Track on Long-Span Railway Bridge

Author:

Choi Jung-Youl1,Chung Jee-Seung2,Kim Sun-Hee3ORCID

Affiliation:

1. Assistant Professor, Department of Railroad Construction & Safety Engineering, Dongyang University, No. 145 Dongyangdae-ro, Punggi-eup, Yeongju-si, Gyeongsangbuk-do 36040, Republic of Korea

2. Professor, Department of Railroad Construction & Safety Engineering, Dongyang University, No. 145 Dongyangdae-ro, Punggi-eup, Yeongju-si, Gyeongsangbuk-do 36040, Republic of Korea

3. Assistant Professor, Department of Architectural Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Republic of Korea

Abstract

The rail and track girder of the direct fixation track (DFT) system on the Yeongjong Grand Bridge (YGB) in Korea exhibit integrated behavior. Therefore, unlike the DFT system in general concrete tracks, the track support stiffness (TSS) of the DFT system on the YGB cannot be evaluated with only the displacement of the rail. The actual TSS of the DFT system supported by the flexible track girders was lower than that of the DFT system supported by the general substructure. For this reason, field measurements and a finite element analysis that reflects the actual operating speed of railroad vehicles on the YGB (i.e., Airport Railroad Express (AREX), nonstop Airport Railroad Express (AREX Express), and Korea Train Express (KTX)) were conducted in this study to determine the interactions between the rail and the track girder. The results indicated that the DFT system on the YGB is supported by track girders that exhibit relatively flexible behavior. As a result, the TSS is directly influenced by the bending stiffness of the track girder.

Funder

Airport Railroad Co., Ltd

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3