Unsteady Squeezing Flow of Casson Fluid with Magnetohydrodynamic Effect and Passing through Porous Medium

Author:

Khan Hamid1ORCID,Qayyum Mubashir1ORCID,Khan Omar2ORCID,Ali Murtaza3

Affiliation:

1. Department of Mathematics, National University of Computer and Emerging Sciences, Peshawar, Pakistan

2. Department of Computer Sciences, National University of Computer and Emerging Sciences, Peshawar, Pakistan

3. Department of Basic Sciences and Humanities, University of Engineering and Technology, Peshawar, Pakistan

Abstract

An unsteady squeezing flow of Casson fluid having magnetohydrodynamic (MHD) effect and passing through porous medium channel is modeled and investigated. Similarity transformations are used to convert the partial differential equations (PDEs) of non-Newtonian fluid to a highly nonlinear fourth-order ordinary differential equation (ODE). The obtained boundary value problem is solved analytically by Homotopy Perturbation Method (HPM) and numerically by explicit Runge-Kutta method of order 4. For validity purpose, we compare the analytical and numerical results which show excellent agreement. Furthermore, comprehensive graphical analysis has been made to investigate the effects of various fluid parameters on the velocity profile. Analysis shows that positive and negative squeeze numberSqhave opposite effect on the velocity profile. It is also observed that Casson parameterβshows opposite effect on the velocity profile in case of positive and negative squeeze numberSq. MHD parameterMgand permeability constantMphave similar effects on the velocity profile in case of positive and negative squeeze numbers. It is also seen that, in case of positive squeeze number, similar velocity profiles have been obtained forβ,Mg, andMp. Besides this, analysis of skin friction coefficient has also been presented. It is observed that squeeze number, MHD parameter, and permeability parameter have direct relationship while Casson parameter has inverse relationship with skin friction coefficient.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3