Unsteady Compressed Williamson Fluid Flow Behavior under the Influence of a Fixed Magnetic Field (Numerical Study)

Author:

El Harfouf Amine1,Herbazi Rachid2,Mounir Sanaa Hayani1,Mes-Adi Hassane3,Wakif Abderrahim4

Affiliation:

1. Multidisciplinary Laboratory of Research and Innovation (LaMRI), Energy, Materials, Atomic and Information Fusion (EMAFI) Team, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University, MOROCCO

2. Intelligent Systems and Applications Laboratory (LSIA), EMSI, Tangier, MOROCCO

3. Laboratory of Process Engineering, Computer Science and Mathematics, National School of Applied Sciences of the Khouribga University of Sultan Moulay Slimane, MOROCCO

4. Faculty of Sciences Aïn Chock, Laboratory of Mechanics, Hassan II University, Casablanca, MOROCCO

Abstract

A numerical investigation is conducted into a two-dimensional mathematical model of magnetized unsteady incompressible Williamson fluid flow over a sensor surface with fixed thermal conductivity and external squeezing accompanied by viscous dissipation effect. Based on the flow geometry under consideration, the current flow model was created. The momentum equation takes into consideration the magnetic field when describing the impact of Lorentz forces on flow behavior. The energy equation takes varying thermal conductivity into account while calculating heat transmission. The extremely complex nonlinear, unstable governing flow equations for the now under investigation are coupled in nature. Due to the inability of analytical or direct methods, the Runge-Kutta scheme (RK-4) via similarity transformations approach is used to tackle the physical problem under consideration. The physical behavior of various control factors on the flow phenomena is described using graphs and tables. For increasing values of the Weissenberg parameter and the permeable velocity parameter, the temperature boundary layer thickens. As the permeable velocity parameter and squeezed flow index increased, the velocity profile shrank. The velocity profile grows as the magnetic number rises. Squeezed flow magnifying increases the Nusselt number's magnitude. Furthermore, the extremely complex nonlinear complex equations that arise in fluid flow issues are quickly solved by RK-4. The current findings in this article closely align with the findings that have been reported in the literature.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3