Pressure-flow relations of human blood in hollow fibers at low flow rates

Author:

Merrill E. W.1,Benis A. M.1,Gilliland E. R.1,Sherwood T. K.1,Salzman E. W.1

Affiliation:

1. Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, and Surgical Services, Massachusetts General Hospital, Boston, Massachusetts

Abstract

Suspensions of human red cells in citrated plasma, in Ringer solution, and in Ringer solution containing albumin were passed through straight and curved glass and plastic hollow fibers (diameter range, 100–1,000 μ). Pressure-flow relations were measured over the pressure range of 0.1– 800 mm water, corresponding to a shear stress range of 0.01– 80 dynes/cm2. The suspensions were tested simultaneously in a rotational viscometer. It was found that red cell suspensions exhibit a yield shear stress only if the plasma protein fibrinogen is present. Experimental pressure-flow data in hollow fibers were in excellent agreement with rotational viscometer measurements and with analytical predictions based on the assumptions that blood flows as a homogeneous continuum and that the velocity at the wall is zero. Effects of tube surface characteristics and curvature on the pressure drop-flow rate relation were not discernible. microcirculation models; model blood flow; yield stress of blood; capillary blood flow and viscometry; fibrinogen and blood flow in hollow fibers; non-Newtonian flow of blood in hollow fibers Submitted on July 20, 1964

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3